Max Planck Institute for Intelligent Systems

Germany

The Max Planck Society is Germany's most successful research organization. The currently 84 Max Planck Institutes and facilities conduct basic research in the service of the general public in the natural sciences, life sciences, social sciences, and the humanities. Max Planck Institutes focus on research fields that are particularly innovative, or that are especially demanding in terms of funding or time requirements. And their research spectrum is continually evolving: new institutes are established to find answers to seminal, forward-looking scientific questions, while others are closed when, for example, their research field has been widely established at universities. This continuous renewal preserves the scope the Max Planck Society needs to react quickly to pioneering scientific developments.

Role

Max Planck Society (MPG) will be incharge of WP5: Dissemination and Communication. Also, it will be leading all activities related to workshops and summer schools related to aerial robotics.

R&D Centre

Max Planck Institute for Intelligent Systems

The goal of the Max Planck Institute for Intelligent Systems is to understand the principles of Perception, Action and Learning in autonomous systems that successfully interact with complex environments and to use this understanding to design future artificially intelligent systems. The Institute studies these principles in biological, computational, hybrid, and material systems ranging from nano to macro scales. We take a highly interdisciplinary approach that combines mathematics, computation, materials science, and biology.
The Perceiving Systems Department at Max Planck Institute for Intelligent Systems: Light, reflected from surfaces, arriving at the imaging plane of a camera, must be interpreted to be useful to a perceiving system. This interpretation is a process of inference from ambiguous and incomplete measurements using experience and knowledge. The Perceiving Systems Department is focused on uncovering the mathematical and computational principles underlying this process. This means understanding the statistics of the world (its shape, motion, material properties, etc.), modeling the imaging process (including optical blur, motion blur, noise, discretization), and devising algorithms to convert light measurements into information about the 3D structure and motion of the world.